Extensions 1→N→G→Q→1 with N=C2 and Q=S32⋊C4

Direct product G=N×Q with N=C2 and Q=S32⋊C4
dρLabelID
C2×S32⋊C424C2xS3^2:C4288,880


Non-split extensions G=N.Q with N=C2 and Q=S32⋊C4
extensionφ:Q→Aut NdρLabelID
C2.1(S32⋊C4) = S32⋊C8central extension (φ=1)244C2.1(S3^2:C4)288,374
C2.2(S32⋊C4) = C62.D4central extension (φ=1)48C2.2(S3^2:C4)288,385
C2.3(S32⋊C4) = C4.S3≀C2central stem extension (φ=1)244C2.3(S3^2:C4)288,375
C2.4(S32⋊C4) = (C3×C12).D4central stem extension (φ=1)484C2.4(S3^2:C4)288,376
C2.5(S32⋊C4) = C3⋊S3.2D8central stem extension (φ=1)244C2.5(S3^2:C4)288,377
C2.6(S32⋊C4) = C3⋊S3.2Q16central stem extension (φ=1)484C2.6(S3^2:C4)288,378
C2.7(S32⋊C4) = C32⋊C4≀C2central stem extension (φ=1)484C2.7(S3^2:C4)288,379
C2.8(S32⋊C4) = C62.2D4central stem extension (φ=1)244+C2.8(S3^2:C4)288,386
C2.9(S32⋊C4) = C62.3D4central stem extension (φ=1)48C2.9(S3^2:C4)288,387
C2.10(S32⋊C4) = C62.4D4central stem extension (φ=1)96C2.10(S3^2:C4)288,388
C2.11(S32⋊C4) = Dic3≀C2central stem extension (φ=1)244-C2.11(S3^2:C4)288,389

׿
×
𝔽